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Motivation Results Acceleration of constant fan-in sparsity
Can we learn Sparse Neural Networks (SNNs) with high generalization performance that are easy to accelerate? 96 | 96 | Algorithm 1 “Condensed” linear layer with constant fan-in sparsity forward pass
= Unstructured Dynamic Sparse Training (DST) matches the generalization of dense models with 85-95% fewer 1 Input: x: the input matrix of shape (batch_size, num_features) |
weights: however accelerating unstructured SNNs is challenein 2: w: the condensed weight matrix of shape (active neurons, constant fan in)
shts, ’ 8 sIng. — 95 — 92 3: indx: indices of non-zero dense weights of shape (active neurons, constant fan_in)
= Structured sparsity is easy to accelerate, but results in worse generalization performance. 2 2 4: output ¢ torch.zeros(size=(batch_size, neurons))
~ ~— 5. forb in range(batch_size) do > For each sample in mini-batch
L>)’ 04 L>)‘ 38 6: forn in range(neurons) do > For each active neuron in layer
Method © © 7: fork in range(constant fan in) do > For each non-zero weight
- S 8: source_idx < idx[n, k]
8 03 8 a4 9: feature < x[b, source idx]
1. Structured RigL (SRigl) is a novel sparse-to-sparse DST method that learns a SNN with constant fan-in sparsity. f f 12 endo;l;rput b, n] 4= feature x win, kI
7. SRigl ablates entire neurons to match the generalization performance of unstructured sparsity at high sparsities. é — RigL é — RigL 12:  end for
3. The sparse representation learned by SRigl is parameter- and memory-efficient and amenable to real-world 92 SngL w/o ablation 80 SngL w/o ablation i f:ti:r?rout .
acceleration. ~ SRigL % ~— SRigL ' 2
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Figure 4. ResNet-18/CIFAR-10 Figure 5. Wide ResNet-22/CIFAR-10 , , , , , ,
. 5 & | = To benchmark our method, we extracted a linear layer from a ViT-B/16 model trained with SRigL and compared it
unstructured const. fan-in to structured (i.e. the same layer accelerated using only the ablated neurons without exploiting the fine-grained
pruning pruning 80 sparsity), and unstructured (i.e. CSR) representations.
4— —> ) p— = RigL = The increased timings for the 95 & 99% sparse structured representations is due to SRigl ablating relatively fewer
SRigL w/o ablation neurons at these sparsities compared to 80 and 20%.
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Figure 1. Constant fan-in pruning v.s. unstructured pruning. |C|_) _ |9 ~
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maSked Figure 6. ResNet-50/ImageNet Figure 7. Vision Transformer (ViT-B/16)/ImageNet 25

Flgure 2. Neuron ablation. At spar5|ty levels over 90%, Rigl learns to completely mask ablate ) a large number of neurons within each layer, 0
effectively reducing layer width. Allowing SRigl to ablate neurons restores Rigl-level performance, even at high sparsities. SRigL (ours) Structured Unstructured

Figure 10. Online CPU inference on an Intel Xeon W-2145. For online (single input) inference, our condensed representation at 20% is 3.4 x faster
than dense and 2.5 x faster than unstructured sparsity

Constant fan-in theoretical analysis Neuron ablation
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) ) ) . o . . . . . Figure 8. Percentage active neurons (i.e., not ablated) following Figure 9. Sparse Fan-In vs. ViT-B/16 layer index at the end of training Figure 11. Batched GPU inference with batch size of 2048 on an NVIDIA Titan V. At 20% sparsity, our condensed representation is 1./ x faster
Figure 3. Output-norm variance analysis. Smaller output variance is indicative of training stability. Constant fan-in consistently yields smaller
. : g Y. Yy Rigl/SRigL training on ResNet-50/ImageNet. with Rigl at 90% sparsity than dense and 13.0x faster than unstructured (CSR) sparse layers. Note y-axis is log-scaled.

variance than other sparsity types.



