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Motivation

Can we learn Sparse Neural Networks (SNNs) with high generalization performance that are easy to accelerate?

Unstructured Dynamic Sparse Training (DST) matches the generalization of dense models with 85–95% fewer

weights; however, accelerating unstructured SNNs is challenging.

Structured sparsity is easy to accelerate, but results in worse generalization performance.

Method

1. Structured RigL (SRigL) is a novel sparse-to-sparse DST method that learns a SNN with constant fan-in sparsity.

2. SRigL ablates entire neurons to match the generalization performance of unstructured sparsity at high sparsities.

3. The sparse representation learned by SRigL is parameter- and memory-efficient and amenable to real-world

acceleration.

Figure 1. Constant fan-in pruning v.s. unstructured pruning.

Figure 2. Neuron ablation. At sparsity levels over 90%, RigL learns to completely mask (ablate) a large number of neurons within each layer,

effectively reducing layer width. Allowing SRigL to ablate neurons restores RigL-level performance, even at high sparsities.

Constant fan-in theoretical analysis
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Figure 3. Output-norm variance analysis. Smaller output variance is indicative of training stability. Constant fan-in consistently yields smaller

variance than other sparsity types.

Results
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Figure 4. ResNet-18/CIFAR-10
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Figure 5.Wide ResNet-22/CIFAR-10
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Figure 6. ResNet-50/ImageNet
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Figure 7. Vision Transformer (ViT-B/16)/ImageNet

Neuron ablation
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Figure 8. Percentage active neurons (i.e., not ablated) following

RigL/SRigL training on ResNet-50/ImageNet.
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Figure 9. Sparse Fan-In vs. ViT-B/16 layer index at the end of training

with RigL at 90% sparsity

Acceleration of constant fan-in sparsity

Algorithm 1 “Condensed” linear layer with constant fan-in sparsity forward pass

1: Input: x: the input matrix of shape (batch_size, num_features)
2: w: the condensed weight matrix of shape (active_neurons, constant_fan_in)
3: indx: indices of non-zero dense weights of shape (active_neurons, constant_fan_in)
4: output← torch.zeros(size=(batch_size, neurons))
5: for b in range(batch_size) do . For each sample in mini-batch

6: for n in range(neurons) do . For each active neuron in layer

7: for k in range(constant_fan_in) do . For each non-zero weight

8: source_idx ← idx[n, k]
9: feature ← x[b, source_idx]

10: output[b, n] += feature ∗ w[n, k]
11: end for

12: end for

13: end for

14: return output

Benchmarks

To benchmark our method, we extracted a linear layer from a ViT-B/16 model trained with SRigL and compared it

to structured (i.e. the same layer accelerated using only the ablated neurons without exploiting the fine-grained

sparsity), and unstructured (i.e. CSR) representations.

The increased timings for the 95 & 99% sparse structured representations is due to SRigL ablating relatively fewer

neurons at these sparsities compared to 80 and 90%.
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Figure 10. Online CPU inference on an Intel Xeon W-2145. For online (single input) inference, our condensed representation at 90% is 3.4× faster

than dense and 2.5 × faster than unstructured sparsity

.
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Figure 11. Batched GPU inference with batch size of 2048 on an NVIDIA Titan V. At 90% sparsity, our condensed representation is 1.7× faster

than dense and 13.0× faster than unstructured (CSR) sparse layers. Note y-axis is log-scaled.


