
Dynamic Sparse Trainingwith Structured Sparsity
Mike Lasby1, Anna Golubeva2,3, Utku Evci4, Mihai Nica5,6, Yani A. Ioannou1

1University of Calgary 2Massachusetts Institute of Technology 3IAIFI 4Google Research 5University of Guelph 6Vector Institute for AI

Motivation

Can we learn Sparse Neural Networks (SNNs) with high generalization performance that are easy to accelerate?

Unstructured Dynamic Sparse Training (DST) matches the generalization of dense models with 85–95% fewer

weights; however, accelerating unstructured SNNs is challenging.

Structured sparsity is easy to accelerate, but results in worse generalization performance.

Method

1. Structured RigL (SRigL) is a novel sparse-to-sparse DST method that learns a SNN with constant fan-in sparsity.

2. SRigL ablates entire neurons to match the generalization performance of unstructured sparsity at high sparsities.

3. The sparse representation learned by SRigL is parameter- and memory-efficient and amenable to real-world

acceleration.

Figure 1. Constant fan-in pruning v.s. unstructured pruning.

Figure 2. Neuron ablation. At sparsity levels over 90%, RigL learns to completely mask (ablate) a large number of neurons within each layer,

effectively reducing layer width. Allowing SRigL to ablate neurons restores RigL-level performance, even at high sparsities.

Constant fan-in theoretical analysis

40 60 80 100
Layer Width

0.05

0.10

0.15

0.20

0.25

0.30

No
rm

 o
f O

ut
pu

t V
ar

ia
nc

e
(||

z|
|2) Const-Per-Layer Theory

Const-Fan-In Theory
Const-Per-Layer Experiment
Const-Fan-In Experiment

sparsity:
0.95
0.9
0.8

Figure 3. Output-norm variance analysis. Smaller output variance is indicative of training stability. Constant fan-in consistently yields smaller

variance than other sparsity types.

Results

50 60 70 80 90 100
Sparsity (%)

91

92

93

94

95

96

Te
st

 A
cc

ur
ac

y
(%

)

RigL
SRigL w/o ablation
SRigL
Dense benchmark

Figure 4. ResNet-18/CIFAR-10

50 60 70 80 90 100
Sparsity (%)

76

80

84

88

92

96

Te
st

 A
cc

ur
ac

y
(%

)

RigL
SRigL w/o ablation
SRigL
Dense benchmark

Figure 5.Wide ResNet-22/CIFAR-10

75 80 85 90 95 100
Sparsity (%)

48

54

60

66

72

78

Te
st

 A
cc

ur
ac

y
(%

)

RigL
SRigL w/o ablation
SRigL
SRigL x2
SRigL x5
Dense benchmark

Figure 6. ResNet-50/ImageNet

80 82 84 86 88 90
Sparsity (%)

70

72

74

76

78

80

Te
st

 A
cc

ur
ac

y
(%

)

RigL
SRigL w/o ablation
SRigL
Dense benchmark

Figure 7. Vision Transformer (ViT-B/16)/ImageNet

Neuron ablation

80 85 90 95 100
Sparsity (%)

50

60

70

80

90

100

Ac
tiv

e
Ne

ro
ns

 (%
)

RigL
SRigL w/o ablation
SRigL
SRigL x2
SRigL x5

Figure 8. Percentage active neurons (i.e., not ablated) following

RigL/SRigL training on ResNet-50/ImageNet.

0 1 2 3 4 5 6 7 8 9
Layer Index

0

100

200

300

400

500

600

700

800

Sp
ar

se
 Fa

n-
In

Figure 9. Sparse Fan-In vs. ViT-B/16 layer index at the end of training

with RigL at 90% sparsity

Acceleration of constant fan-in sparsity

Algorithm 1 “Condensed” linear layer with constant fan-in sparsity forward pass

1: Input: x: the input matrix of shape (batch_size, num_features)
2: w: the condensed weight matrix of shape (active_neurons, constant_fan_in)
3: indx: indices of non-zero dense weights of shape (active_neurons, constant_fan_in)
4: output← torch.zeros(size=(batch_size, neurons))
5: for b in range(batch_size) do . For each sample in mini-batch

6: for n in range(neurons) do . For each active neuron in layer

7: for k in range(constant_fan_in) do . For each non-zero weight

8: source_idx ← idx[n, k]
9: feature ← x[b, source_idx]

10: output[b, n] += feature ∗ w[n, k]
11: end for

12: end for

13: end for

14: return output

Benchmarks

To benchmark our method, we extracted a linear layer from a ViT-B/16 model trained with SRigL and compared it

to structured (i.e. the same layer accelerated using only the ablated neurons without exploiting the fine-grained

sparsity), and unstructured (i.e. CSR) representations.

The increased timings for the 95 & 99% sparse structured representations is due to SRigL ablating relatively fewer

neurons at these sparsities compared to 80 and 90%.

SRigL (ours) Structured Unstructured0

25

50

75

100

125

150

175

200

Ti
m

e
(

s)

Dense 80 90 95 99

Figure 10. Online CPU inference on an Intel Xeon W-2145. For online (single input) inference, our condensed representation at 90% is 3.4× faster

than dense and 2.5 × faster than unstructured sparsity

.

SRigL (ours) Structured Unstructured

103

104

102

Ti
m

e
(

s)

Dense 80 90 95 99

Figure 11. Batched GPU inference with batch size of 2048 on an NVIDIA Titan V. At 90% sparsity, our condensed representation is 1.7× faster

than dense and 13.0× faster than unstructured (CSR) sparse layers. Note y-axis is log-scaled.

