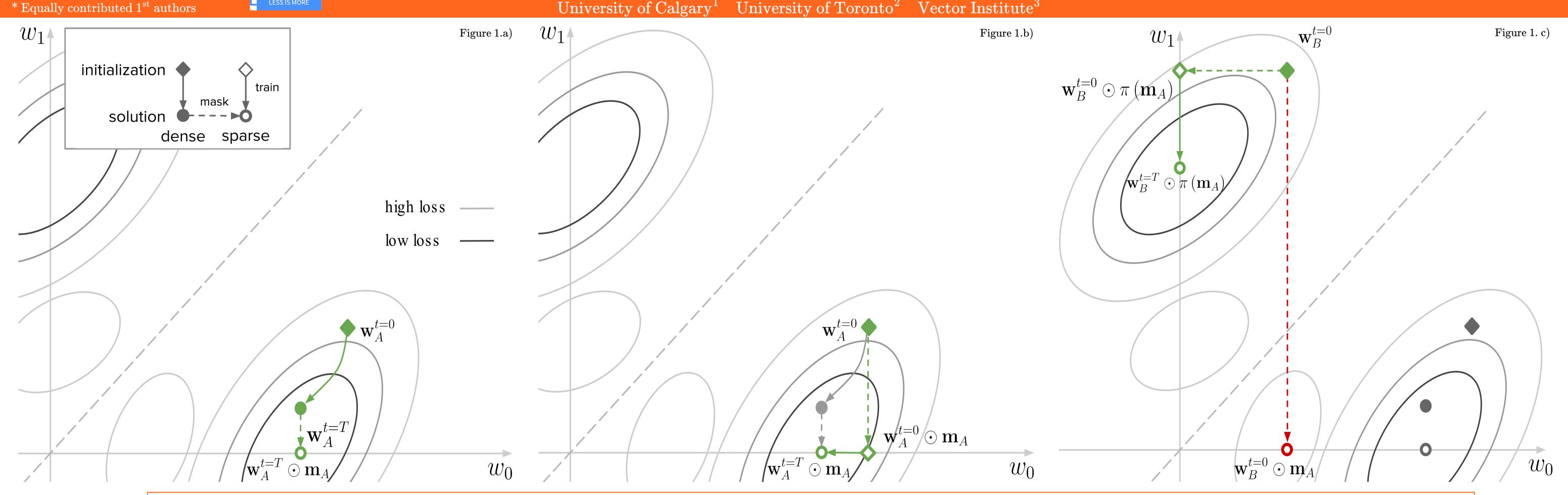


Sparse Training from Random Initialization: Aligning Lottery Ticket Masks using Weight Symmetry

 $oxed{\mathbf{Mohammed\ Adnan}^{*,1,3}, \mathbf{Rohan\ Jain}^{*,1}, \mathbf{Ekansh\ Sharma}^{2,3}, \mathbf{Yani\ Ioannou}^1}$ University of Calgary¹ University of Toronto² Vector Institute³



In Figure 1.a), a dense random initialization, $\mathbf{w}_A^{t=0}$, converges to a dense solution, $\mathbf{w}_A^{t=T}$, which is then pruned using weight magnitude resulting in the mask $\mathbf{m}_A = (1,0)$. In Figure 1.b), we demonstrate the LTH: re-use the init, $\mathbf{w}_A^{t=0}$, to train model A with the pruned mask, \mathbf{m}_A . In Figure 1.c), permuting the mask, $\pi(\mathbf{m}_A)$, to match the (symmetric) basin in which the new initialization, $\mathbf{w}_B^{t=0}$, is in will enable sparse training.

Background

- Lottery Ticket Hypothesis (LTH): identifies sparse sub-networks that, when trained independently, can match dense model performance. [1]
- 2. NNs are **permutation invariant**: swapping neurons in a layer doesn't change the function underlying they compute.
- 3. Git Re-Basin showed that NN loss landscapes nearly contain a **single** solution basin *modulo* permutations. [2]

Motivation

- Motivated by the goal of training a sparse model from a truly random init.
 - [1] demonstrated that training with a highly sparse is mask possibly, proposing the LTH.

The **key** limitation of LTH: a dense model must be first trained to get a mask, which is *only* usable with its original random init.

- Obtaining winning tickets requires *rewinding* requiring significantly more compute.
- Lottery tickets do **not** generalize well to new random init's.

We seek to answer:

How can we train a LTH mask from a different random init. while maintaining good generalization?

Our Findings

To reuse an LTH winning ticket mask with a truly different random init. ...

We leverage permutation symmetries, to permute the mask to align with the new random init's optimization basin.

- We find that a sparse model (with the permuted mask) can nearly match generalization performance of the LTH solution.
- We show for a fixed init., the dense solution and corresponding LTH solution reside within the same loss basin when variance collapse is considered. This conclusion presents a new perspective compared to the work of [3].
- Models trainied from random init. using the permuted mask are more functionally diverse in the solutions they learn vs. LTH.
- We empirically demonstrate this on CIFAR-10/100 and ImageNet with VGG11 and ResNet models of varying widths.

Methodology

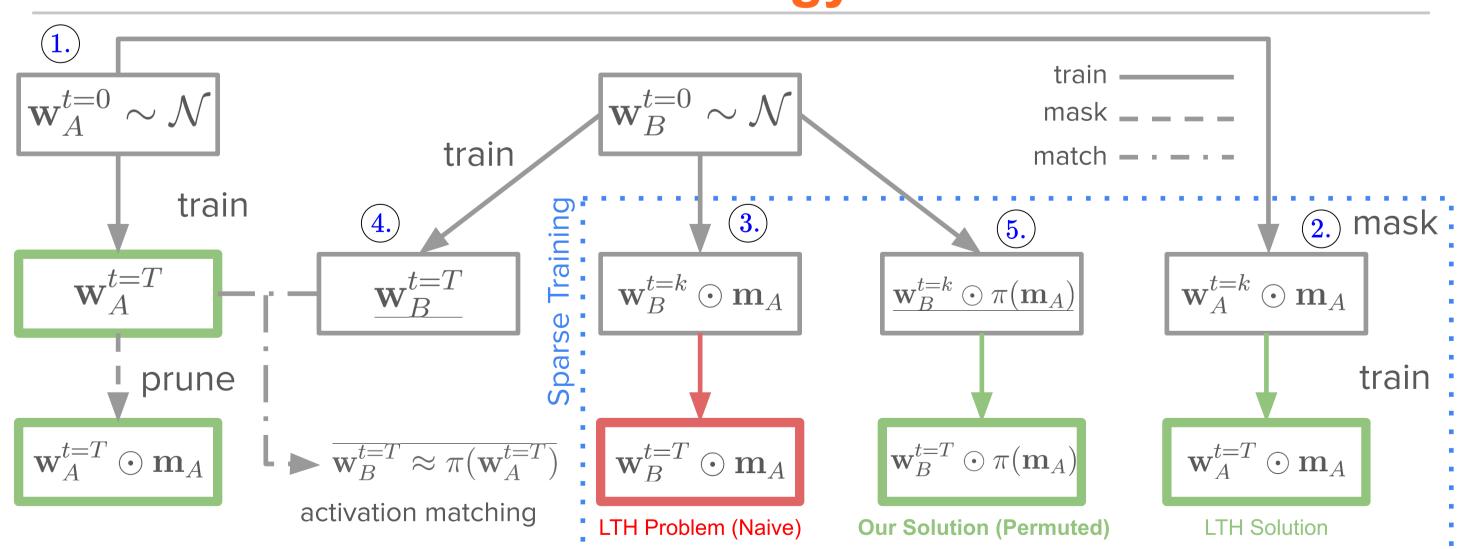


Figure 1. The overall framework of our training procedure.

Results: ResNet50/ImageNet + VGG11/CIFAR-10

- VGG11: increasing the rewind point, the permuted solution closely matches the accuacy of LTH, while naive solution significantly plateaus.
- ResNet50: permuted solution beats the naive solution across all sparsity levels, validating our hypothesis on large datasets.

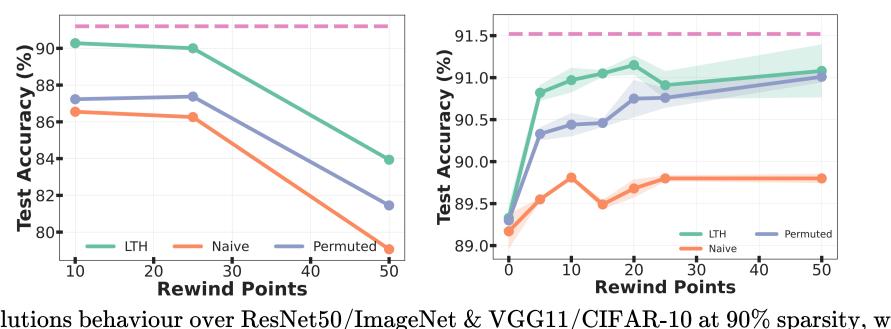
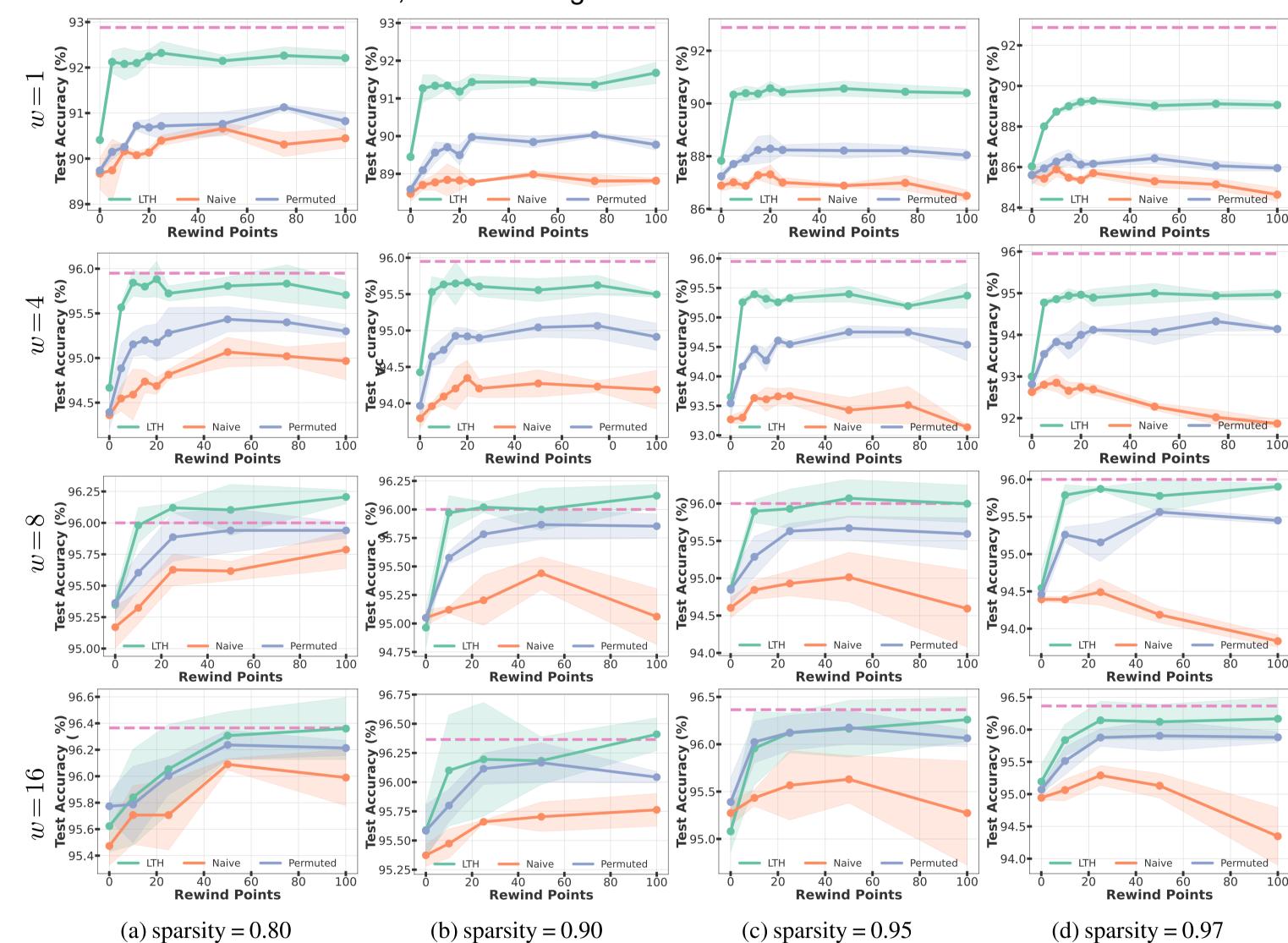


Figure 2. Permuted solutions behaviour over ResNet50/ImageNet & VGG11/CIFAR-10 at 90% sparsity, with width = 1.

Results: ResNet20/CIFAR-10

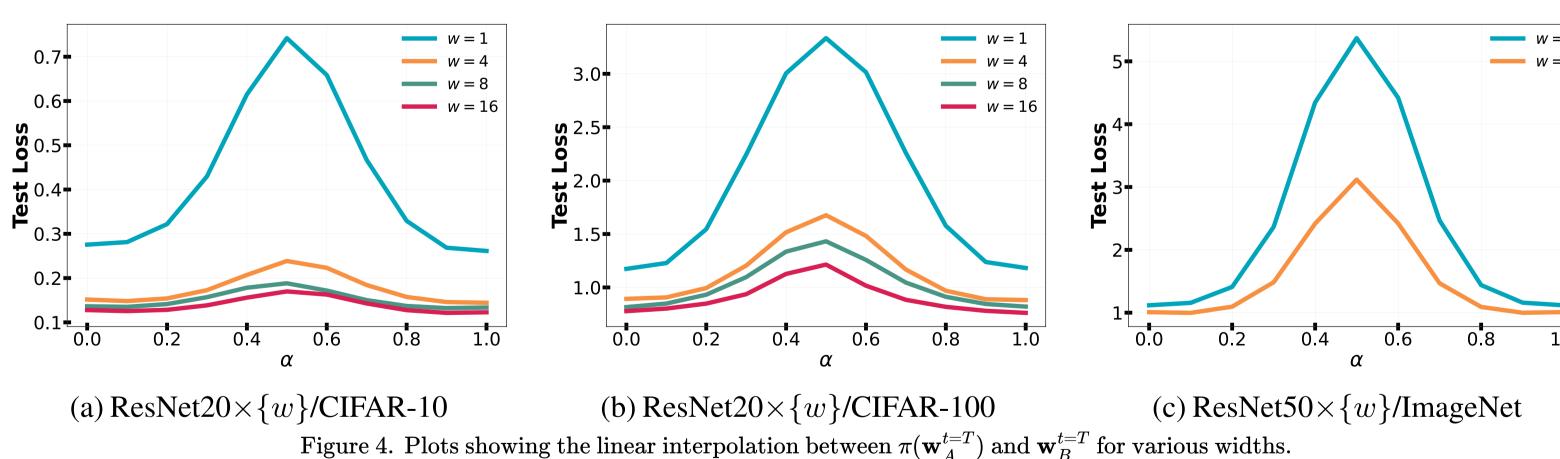
- Permuted solution outperforms the naive solution. As sparsity increases, training becomes harder, widening the gap between permuted and naive solutions.
- Both the LTH & permuted solution do not perform well at a truly random init (k = 0) but **improves** on increasing the rewind point until plateauing.
- As width increases, the gap between training from random init. with the permuted mask & the LTH/ dense baseline decreases, unlike training with the naive mask.



Effect of Model Width

Figure 3. Test accuracy of sparse networks solutons vs. increasing rewind points for different sparsity levels and widths, w.

- Larger width exhibits better linear mode connectivity (LMC). As the width of the model increases, the permutation matching algorithm gets more accurate, thereby reducing the loss barrier.
- This leads to an improvement in performance of our permuted solution.



Ensemble Diversity & Loss Landscape Analysis

- A limitation of LTH: consistently converges to very similar solutions to the original pruned model, effectively relearning the same solution. [4]
- Although the mean test acc. of LTH is higher, ensemble of permuted models acheives better test acc. due to better functional diversity of permuted models.
- We also show, modulo permutations reusing the permuted mask leads to convergence in the same mode as the LTH solution.

