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In Figure 1.a), a dense random initialization, wffo, converges to a dense solution, WTT, which is then pruned using weight magnitude resulting in the mask m4 = (1, 0).

In Figure 1.b), 0
In Figure 1.c), permuting the mask, 7(m ), to match the (symmetric) basin in which the new initialization, W%:O, is in will enable sparse training.

Background Results: ResNet20/CIFAR-10

we demonstrate the LTH: re-use the init, wil: , to train model A with the pruned mask, m 4.

Lottery Ticket Hypothesis (LTH): identifies sparse sub-networks that, when trained

1. . @ Permuted solution outperforms the naive solution. As sparsity increases, training becomes harder,
independently, can match dense model performance. [1] . . .
widening the gap between permuted and naive solutions.
2. NNs are permutation invariant: swapping neurons in a layer doesn’t change the function ©® Both the LTH & permuted solution do not perform well at a truly random init (k = 0) but improves on
underlying they compute. § increasing the rewind point until plateauing.
3. Git Re-Basin showed that NN loss landscapes nearly contain a single solution basin modulo © As width increases, the gap between training from random init. with the permuted mask & the LTH/
permutations. [2] dense baseline decreases, unlike training with the naive mask.
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©® We find that a sparse model (with the permuted mask) can nearly match generalization
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performance of the LTH solution. —e
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Figure 3. Test accuracy of sparse networks solutons vs. increasing rewind points for different sparsity levels and widths, w.

© Models trainied from random init. using the permuted mask are more functionally diverse in

the solutions they learn vs. LTH. Effect of Model Width

® We empirically demonstrate this on CIFAR-10/100 and ImageNet with VGG11 and ResNet @ Larger width exhibits better linear mode connectivity (LMC). As the width of the model increases,
models of varying widths. the permutation matching algorithm gets more accurate, thereby reducing the loss barrier.
MethOdOIOQy @ This leads to an improvement in performance of our permuted solution.
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activation matching

Ensemble Diversity & Loss Landscape Analysis

© Alimitation of LTH: consistently converges to very similar solutions to the original pruned model, effectively
relearning the same solution. [4]
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Figure 1. The overall framework of our training procedure.

ReSUIts: ReSNetSO/I mageNet T VGG1 1 /CI FAR'1 O © Although the mean test acc. of LTH is higher, ensemble of permuted models acheives better test acc. due to
@ VGG11: increasing the rewind point, the permuted solution closely matches the accuacy of better functional diversity of permuted models.
LTH, while naive solution significantly plateaus. @ We also show, modulo permutations reusing the permuted mask leads to convergence in the same mode as
© ResNet50: permuted solution beats the naive solution across all sparsity levels, validating our the LTH solution. . T T H0
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