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= Modern deep learning models achieve overwhelming generalization performance in image CIFAR-10 + ResNet-18
classification tasks on vision datasets like CIFAR-10 and CIFAR-100. 100

= However, we observe a bias in classification accuracies of different classes even when the
datasets are balanced across classes.

= This classification bias has been seen to aggravate in settings like model pruning [3] and 8 L g 2.7 / /
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E Figure 5. Standard Deviation of Class-wise Test Accuracies Across All Classes: for different data sparsities when
. "_:_" e dense ResNet-18 is trained on CIFAR-10 (left) and ResNet-50 is trained on CIFAR-100 (right).
= While pruning of model parameters has been extensively studied, pruning the dataset by 2 o ; e  10%
identifying important training samples has received attention only recently. o 0% | | o
= The primary motivation for pruning data has been to study the effect of individual samples -~ ® 30% ) lT order to study the bias on clllualnhﬁable terms, we calculate the standard deviation of
and population sub-groups on training dynamics. 50 ®  40% C1asSTWISE aCtUrACIes across a. c.asses. o |
= By reducing samples in the training data, these techniques additionally offer huge savings in 50% " A lower value of standaro dewahon 5“8865?5 that the deviations Of per.—class_ accuracies from
computation . the mean per-class accuracy is small, which indicates a lower classification bias.
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= With most of these techniques leading to imbalanced data distributions, it is worth thinking a8 | F|gure 5 shdovg/s the p.ltot of standard deviation of per-class test accuracy across classes with
about how they affect the classification bias. 0 1 2 3 a 5 6 2 . 9 INncreasing data sparsity. | - | o
Clase Labals = For both the models, there is a range of data sparsities for which the standard deviation of
per-class accuracies is lower than that with training over dense data. It is interesting to note
Data Diet Figure 3. CIFAR 10/ResNet 18 Class-wise Accuracies: A plot of accuracies of individual classes with increasing data that for these exact range of spar.sﬂ:y values., the overall test accuracies of the models trained
sparsity for ResNet-18 trained on CIFAR-10. An increase in data sparsity leads to increase in the accuracy of most of on sparse data are comparable with that trained on dense data.
the classes.

= Data diet |2] is a state-of-the-art data pruning technique which identifies important samples

early in training using simple scores. Class-wise Data Keep Ratio

« The importance of training samples is decided with the help of two scores: ‘GraNd (Gradient = We observe the trend in the accuracies of the individual classes to analyse the classification

) ( ) bias.
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- GraND Scores: The GraNd score of a training example at time ¢ in training is defined as = Figure 3 shows the variation of class-wise accuracies with increasing data sparsity on =
' . . CIFAR-10 trained with ResNet-18. - o
Ew,llgit(x, y)||2, where gi(x,y) is the gradient of the loss evaluated over the sample (z,y) at | | =
training step t. = Classes 3 (cat) and 5 (dog), whose performance is worst over dense data show improved oo
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= EL2N Scores: The EL2N score for a particular training example at time t in training is given by accdrac esoat oderate le ?S of data sparsity o .
E||p(wt, ) — y||2, where p(wy, z) is a probability distribution over the output classes of the = Above 50%, we see a drop in the accuracy of most of the classes. This is in agreement with
confidence of prediction. the trend observed for generalization performance, where the model performance starts
. . degrading above 50% data sparsity. : . : 3 : : : : : ;
= These scores are evaluated for every training sample and they are ranked according to 5 5 0 P 4 ClassLabels
decreasing values of the scores. CIFAR100 + ResNet-50 Best 10 Classes CIFAR100 + ResNet-50 Worst 10 Classes Figure 6. CIFAR-10/ResNet-18 Data Keep Ratio: A plot of data keep ratio across all the classes with increasing data
= Depending on the desired level of sparsity, an appropriate fraction of samples is chosen. 0 L * i { sparsity.
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50 f - ff - ; = Figure 6 shows the variation of class-wise data keep ratio with data sparsity. Interestingly,
= - \ ] s | " I T " o classes 3 (cat) and 5 (dog) have the highest keep ratio across all the models.
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g "0 z 0 » . o L : 1 : o % = This suggests that both these classes contain more difficult samples to learn than other
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2 2 40 o so% ! T s classes, consistent with the intuition that these two classes likely share the most visual
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= Our analysis shows that data sparsification technigues like data diet can help reduce
classification bias.

Fraction of Dataset Pruned Fraction of Dataset Pruned

= For the ResNet-50 architecture trained over CIFAR-100, we analyse the class-wise accuracies
Figure 1. CIFAR-10/ResNet-18 Figure 2. CIFAR-100/ResNet-50 of the 10 best and worst performing classes over the dense model.

, o , . , . = More interestingly, our results suggest that training on imbalanced data distributions — when
= Figure 4 shows the variation of accuracies of these classes with changing levels of sparsity.

created by informed data pruning algorithms like data diet — can result in image classification

= Figures 1 and 2 show the variation of overall model accuracies with data sparsity. In both " While the best performing classes do not suffer a |ot in test accuracy, many worst performing models with more consistent class-wise generalization performance.
cases, for data sparsities within a certain range, training over sparse data is able to match the classes show better accuracies with increasing data sparsity.
performance of training over full dataset. = Although these observation hint at reduced classification bias with increasing data sparsity,
= Beyond a certain level of data sparsity, the generalization performance drops. we need more compelling evidence to justify this observation. References
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= However, this analysis does not provide any idea about the classification bias due to data diet.
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